P K Chattopadhyay
Articles written in Pramana – Journal of Physics
Volume 74 Issue 4 April 2010 pp 513-523 Research Articles
Relativistic star solutions in higher-dimensional pseudospheroidal space-time
We obtain relativistic solutions of a class of compact stars in hydrostatic equilibrium in higher dimensions by assuming a pseudospheroidal geometry for the space-time. The space-time geometry is assumed to be ($D - 1$) pseudospheroid immersed in a 𝐷-dimensional Euclidean space. The spheroidicity parameter (𝜆) plays an important role in determining the equation of state of the matter content and the maximum radius of such stars. It is found that the core density of compact objects is approximately proportional to the square of the space-time dimensions (𝐷), i.e., core of the star is denser in higher dimensions than that in conventional four dimensions. The central density of a compact star is also found to depend on the parameter 𝜆. One obtains a physically interesting solution satisfying the acoustic condition when 𝜆 lies in the range $\lambda$ > $(D + 1)/(D − 3)$ for the space-time dimensions ranging from $D = 4$ to 8 and $(D + 1)/(D − 3)$ < $\lambda$ < ($D^{2} - 4D + 3$)/($D^{2} - 8D - 1$) for space-time dimensions $\geq 9$. The non-negativity of the energy density (𝜌) constrains the parameter with a lower limit (> 1). We note that in the case of a superdense compact object the number of space-time dimensions cannot be taken infinitely large, which is a different result from the braneworld model.
Volume 95, 2021
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.